43 research outputs found

    The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017

    Get PDF
    This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of the In-service Aircraft for a Global Observing System (IAGOS). Considering the high interannual variability of biomass burning emissions and the episodic nature of long-range pollution transport, one strength of this study is the amount of data taken into account, namely 30&thinsp;000 vertical profiles at nine clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002–2017.As a preliminary, a brief overview of the spatiotemporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations).This study focuses on the free troposphere (altitudes above 2&thinsp;km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110–150 (48)&thinsp;ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25&thinsp;% strongest CO anomalies appear reasonably well distributed throughout the year, in contrast to the 5&thinsp;% or 1&thinsp;% strongest anomalies that exhibit a strong seasonality with, for instance, more frequent anomalies during summertime in the northern United States, during winter/spring in Japan, during spring in south-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall in Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere.In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO (SOft attribution using FlexparT and carbon monoxide emission inventories for In-situ Observation database) v1.0 IAGOS added-value products that consist of FLEXible PARTicle dispersion model (FLEXPART) 20-day backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic Monitoring Atmospheric Composition and Climate (MACC)/CityZEN EU projects (MACCity) and biomass burning Global Fire Assimilation System (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in&thinsp;ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during the summer season. In both Japan and south India, the anthropogenic emissions dominate all throughout the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in Southern Hemisphere Africa and South America.To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.</p

    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Get PDF
    International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies

    Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Get PDF
    The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60˚N–60˚S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest

    Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Get PDF
    The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60˚N–60˚S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest

    Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model

    No full text
    Secondary inorganic compounds represent a major fraction of fine aerosol in the Paris megacity. The thermodynamics behind their formation is now relatively well constrained but, due to sparse direct measurements of their precursors (in particular NH3 and HNO3), uncertainties remain on their concentrations and variability as well as the formation regime of ammonium nitrate (in terms of limited species among NH3 and HNO3) in urban environments such as Paris. This study presents the first urban background measurements of both inorganic aerosol compounds and their gaseous precursors during several months within the city of Paris. Intense agriculture-related NH3 episodes are observed in spring/summer while HNO3 concentrations remain relatively low, even during summer, which leads to a NH3-rich regime in Paris. The local formation of ammonium nitrate within the city appears low, despite high NOx emissions. The data set also allows evaluating the CHIMERE chemistry-transport model (CTM). Interestingly, the rather good results obtained on ammonium nitrates hide significant errors on gaseous precursors (e.g., mean bias of −75 and +195 % for NH3 and HNO3, respectively). This leads to a misrepresentation of the nitrate formation regime through a highly underestimated gas ratio metric (introduced by Ansari and Pandis, 1998) and a much higher sensitivity of nitrate concentrations to ammonia changes. Several uncertainty sources are investigated, pointing out the importance of better assessing both NH3 agricultural emissions and OH concentrations in the future. These results remind us of the caution required when using of CTMs for emission scenario analysis, highlighting the importance of prior diagnostic and dynamic evaluations

    New concepts for the comparison of tropospheric NO<sub>2</sub> column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10

    No full text
    We compare tropospheric column densities (vertically integrated concentrations) of NO2 from three data sets for the metropolitan area of Paris during two extensive measurement campaigns (25 days in summer 2009 and 29 days in winter 2010) within the European research project MEGAPOLI. The selected data sets comprise a regional chemical transport model (CHIMERE) as well as two observational data sets: ground-based mobile Multi-AXis-Differential Optical Absorption Spectroscopy (car-MAXDOAS) measurements and satellite measurements from the Ozone Monitoring Instrument (OMI). On most days, car-MAX-DOAS measurements were carried out along large circles (diameter similar to 35 km) around Paris. The car-MAX-DOAS results are compared to coincident data from CHIMERE and OMI. All three data sets have their specific strengths and weaknesses, especially with respect to their spatiotemporal resolution and coverage as well as their uncertainties. Thus we compare them in two different ways: first, we simply consider the original data sets. Second, we compare modified versions making synergistic use of the complementary information from different data sets. For example, profile information from the regional model is used to improve the satellite data, observations of the horizontal trace gas distribution are used to adjust the respective spatial patterns of the model simulations, or the model is used as a transfer tool to bridge the spatial scales between car-MAX-DOAS and satellite observations. Using the modified versions of the data sets, the comparison results substantially improve compared to the original versions. In general, good agreement between the data sets is found outside the emission plume, but inside the emission plumes the tropospheric NO2 vertical column densities (VCDs). are systematically underestimated by the CHIMERE model and the satellite observations (compared to the car-MAX-DOAS observations). One major result from our study is that for satellite validation close to strong emission sources (like power plants or megacities), detailed information about the intra-pixel heterogeneity is essential. Such information may be gained from simultaneous car-MAX-DOAS measurements using multiple instruments or by combining (car-) MAX-DOAS measurements with results from regional model simulations

    The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    No full text
    Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS) framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semivolatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (Delta PM10 and Delta CO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimated values of Delta PM10/Delta CO observed in Kuopio (by a factor of 2), employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas-particle partitioning and oxidation of SVOCs into account is found to result in a major improvement of the agreement of simulations and satellite measurements of aerosol optical depth, as well as in considerable changes in predicted aerosol composition and top-down BB aerosol emission estimates derived from AOD measurements

    A novel model evaluation approach focusing on local and advected contributions to urban PM&lt;sub&gt;2.5&lt;/sub&gt; levels – application to Paris, France

    No full text
    International audienceAbstract. Aerosol simulations in chemistry transport models (CTMs) still suffer from numerous uncertainties, and diagnostic evaluations are required to point out major error sources. This paper presents an original approach to evaluate CTMs based on local and imported contributions in a large megacity rather than urban background concentrations. The study is applied to the CHIMERE model in the Paris region (France) and considers the fine particulate matter (PM2.5) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium), for which daily measurements are available during a whole year at various stations (PARTICULES project). Back-trajectory data are used to locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM2.5 simulations (bias of +16%) hide significant error compensations between local and advected contributions, as well as in PM2.5 chemical compounds. In particular, winter time organic matter (OM) imports appear strongly underestimated while local OM and elemental carbon (EC) production is overestimated all along the year. Erroneous continental wood burning emissions and missing secondary organic aerosol (SOA) pathways may explain errors on advected OM, while the carbonaceous compounds is likely to be related to errors in emissions and dynamics. A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51% on the local PM2.5 contribution. Such an evaluation finally gives more detailed insights on major gaps in current CTMs on which future efforts are needed
    corecore